British Plastics Federation
Plastics Recyclers Group

“The role of plastics in the EFW and advanced conversation technologies market place”

Presented by Paul Danks 23.6.11
Agenda

• Introduction to myself and Orchid
• Orchid Process
• Fuel output from Orchid process
• Background information on UK and European waste and fuel specifications
• Various outlets/technology options
• Outlet technology
• Current fuel specifications for various technology options
• Gate fees for fuels
• Benefits/issues of plastic as an energy in feedstock
• What the future hold for plastics in fuels?
Introduction to myself & Orchid

• I’ve been working in the Waste management, treatment, fuel production and power generation industry for the past 20 years

• Worked for two of the major Waste Management/treatment companies in the UK

• Over the past 10 years I’ve been specialising in alternative bio-fuel/RDF technologies and alternative power generation technologies i.e. Gasification and pyrolysis

• Project development of EFW facilities from alternative fuels utilising alternative technologies

• Sourcing outlet markets for recycables and alternative fuel/RDF ‘s and alternative raw materials into the marketplace
Introduction to myself & Orchid

• Orchid is part of the Orchid Bio-energy Group

• Our investors are ArcLight (US based investment fund in wind, solar, petro-chem, alternative fuels)

• The Orchid process was chosen as part of the DEFRA new technologies programme

• Its purpose was to process MSW and prove the process could recover various size fibre fuels and blend them to various specifications for an outlet market

• Following the successful 12 month programme the facility went Commercial April 2009

• Programme is to build a facility at Shotton for 160K p.a. plus Bexley 160k p.a. over the next 2 years

• Continuous R&D including Orchid fuel to liquid (successful trials conducted)
Orchid Process
Fuel Output from Orchid Process

The Orchid process manufactures 3 output fuels.

- 6mm biomass rich fuel which comprises 85% by weight and CV biomass content (meets ROC criteria) ideal for biomass WID complaint boiler (approx 20% of input feed)

- 6-16 mm floc which comprises approx 70% biomass remainder 30% is made up of light plastics and textiles ideal for Cement industry, gasification, pyrolysis and liquid fuel (approx 40% of input feed)

- 16-30 mm floc which comprises approx 50% biomass remainder 50% is made up of light plastics and textiles ideal for Cement industry, gasification, pyrolysis and liquid fuel (approx 40% of input feed)
Fuel Outlets/Technology Options

- Cement industry (KILN) UK – only available on large volume contracts – fuel specification
difficult to meet – Technology proven been operationally for numerous years

- Cement industry (KILN) overseas - only available on large volume contracts – fuel specification
difficult to meet – Technology proven been operationally for numerous years

- Combined Heat & Power (CHP) UK/Overseas – Available for biomass rich fuel in UK, overseas
 facilities will take more varied feedstock – need to be WID compliant to maximise fuel input

- Gasification – technology only proven via limited suppliers – lack of operational facilities in the UK
 – proving difficult to financial close projects in the UK

- Pyrolysis – technology not fully proven at commercial scale – lack of operational facilities in the
 UK and Europe – proving difficult to financial close projects in the UK
Fuel Outlets/Technology Options

• Energy from Waste facilities (UK) and (Overseas) Technology proven been operationally for numerous years – UK facilities are prominently for PFI contracts with no capacity for commercial waste suppliers – Overseas facilities currently have tonnage shortfall, targeting the UK marketplace for materials

• Biomass Boilers - technology proven for biomass only – requires upgrade of emission control to take more varied feedstock ie RDF

• Plastics to liquid fuel – technology not proven at commercial scale – various scale trials conducted proving difficult to financial close projects
Outlet Technologies
<table>
<thead>
<tr>
<th>Technology and Offtake</th>
<th>Fuel size</th>
<th>CV</th>
<th>Moisture content</th>
<th>Fuel presentation</th>
<th>Exclusions in fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement industry (KILN) UK</td>
<td>Particle < 30 mm</td>
<td>>17 mj/kg net</td>
<td><15%</td>
<td>Floc</td>
<td>Chlorine below 0.6%, low metal content thresholds and no large metal or glass</td>
</tr>
<tr>
<td>Cement industry (KILN) UK</td>
<td>Particle < 20 mm</td>
<td>>18 mj/kg</td>
<td><17%</td>
<td>Floc</td>
<td>Chlorine below 0.6% low metal content thresholds and no large metal or glass</td>
</tr>
<tr>
<td>Cement Industry (KILN) UK</td>
<td>Particle < 30 mm</td>
<td>>17 mj/kg net</td>
<td><15%</td>
<td>Floc</td>
<td>Chlorine below 0.4 % low metal content thresholds and no large metal or glass</td>
</tr>
<tr>
<td>Overseas RDF marketplace</td>
<td>Particle < 35 mm</td>
<td>>15 mj/kg</td>
<td><17%</td>
<td>Baled and wrapped</td>
<td>Chlorine below 0.6%, low metal content thresholds and no large metal or glass</td>
</tr>
<tr>
<td>Cement industry overseas (KILN)</td>
<td>Particle < 35 mm</td>
<td>>16 mj/kg net</td>
<td><15%</td>
<td>Baled and wrapped</td>
<td>Chlorine below 0.6%, low metal content thresholds and no large metal or glass</td>
</tr>
<tr>
<td>CHP Overseas</td>
<td>Particle < 35 mm</td>
<td>15-17 mj/kg</td>
<td><10%</td>
<td>Baled & wrapped plus pellets</td>
<td>Chlorine below 0.6%, low metal content thresholds and no large metal or glass</td>
</tr>
<tr>
<td>Gasification</td>
<td>Particle < 20 mm</td>
<td>>16 mj/kg net</td>
<td><15%</td>
<td>Briquettes 65-75 mm</td>
<td>Chlorine below 0.6%, low metal content thresholds and no large metal or glass</td>
</tr>
<tr>
<td>Gasification</td>
<td>Particle < 100 mm</td>
<td>>8 mj/kg</td>
<td><55%</td>
<td>Shredded</td>
<td>Chlorine below 2%, low metal content thresholds and no large metal or glass</td>
</tr>
<tr>
<td>Pyrolysis</td>
<td>Particle < 20 mm</td>
<td>> 18 mj/kg</td>
<td><10%</td>
<td>Shredded</td>
<td>Chlorine below 2%, low metal content thresholds and no large metal or glass</td>
</tr>
<tr>
<td>Large EFW overseas/UK</td>
<td>Particle <400 mm</td>
<td>8.5-11 mj/kg</td>
<td>>25%</td>
<td>Loose, baled and wrapped</td>
<td>No exclusions</td>
</tr>
</tbody>
</table>
Gate fee for fuels

- **Cement industry UK** - £45-60 per tonne (collected) limited capacity in UK marketplace

- **Cement industry Overseas** - £35-55 per tonne (collected) capacity available

- **RDF overseas** - £50-60 per tonne (delivered) capacity available, large interest in attracting material from the UK

- **Gasification UK** - £30-50 per tonne (collected) limited capacity

- **Biomass UK** - £10-20 per tonne (collected) limited capacity, becoming more readily available

- **EFW UK** - £80-120 per tonne (delivered) very limited capacity

- **EFW Overseas** - £65-80 per tonne (delivered) huge shortfall currently, attracting material from UK market
Benefits/Issues of plastic as energy in feedstock

- Plastic is a fantastic material to boost the energy value of all alternative fuels with average CV of 30-40 mj/kg

- The plastic content by weight in MSW – Dense plastics 6-15%, Plastic film 6-10%

- The plastic content by weight in C&I – Dense plastics 15-20%, Plastic film 10-15%

- Plastics in gasification and pyrolysis technologies produce reduced dioxins and furans due to the combustion temperature of the vessel typically between 800-1000 degrees – emission clear up equipment capex is reduced and the output gas is cleaner and stable to run an engine or generate steam to run a turbine for electricity generation

- Plastics in EFW however produce dioxins and furans, this is due to combustion temperature of 1200-1400 degrees the temperature where dioxins and furans form. Reason for
Benefits/Issues of plastic as energy in feedstock

- Dependent upon the technology / outlet further preparation maybe required to meet the fuel specification of the outlet market:
 - size reduction
 - further blending
 - change of out loading method
 - change of transport method to remove material from site

- If the above is required additional cost will be incurred to meet fuel specifications

- Liquid fuel technology requires a plastic rich infeed material
What does the future hold for plastic in fuels?

• Over the next couple of years plastics are going to play an important role as an important ingredient to alternative fuels and alternative technologies.

• The UK infrastructure being developed over the next 5 years will release capacity to the plastics industry an outlet away from Landfill and reduce costs.

• The European infrastructure requires material from the UK marketplace to address the shortfall plus facilities currently being commissioned.

• Whilst additional operating cost may be incurred to meet specification the gate fee will become more competitive due to the new infrastructure requiring material to operate.

• An exciting opportunity for the plastics industry to contribute and added ingredient to the increasing demand for alternative fuels.
Many Thanks for your time

Paul Danks
Business Development Manager
Orchid Environmental Ltd

Mobile: 07714 764771
Email: pdanks@orchid-environmental.co.uk